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AMTRACT 

The numerical stability of evolutionary calculations can be tested experimentally by 
running two calculations in parallel, starting from initial conditions that are very 
similar, and monitoring the differences between the systems. An integration of an n-body 
system with gravitational interactions provides an example that is useful for illustrative 
purposes. Some features of the method are described, followed by a discussion of some 
considerations in its application. 

1. INTRODUCTION 

An initial-value problem can describe the evolution of a physical system from 
some specified initial state according to a set of governing equations. The equations 
may or may not include boundary conditions, but there is no eigenvalue character 
resulting from forcing some specified terminal state. When an initial-value problem 
is run on a computer, the results may appear plausible even if they are unreliable 
because of some unrecognized numerical instability. Analytic methods may not 
be available for studying numerical stability; the techniques of numerical analysis 
are usually applied to the much simpler processes out of which larger calculations 
are built. Some aspects of a large problem are not tractable in the usual numerical 
analysis study; the “errors” in inputs to a certain numerical process inside a large 
calculation are not independent, for example. Initial-value problems do not share 
the inherent stability of some kinds of calculations: self-consistent methods, for 
example, are intrinsically stable if they possess unique solutions. Theoretical 
studies of the stability of initial value problems have been made, for example, 
by Lax and Richtmyer [l]. 
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A suitably designed experimental approach can provide a method for studying 
the numerical stability of large calculations even when a theoretical approach is 
not available. An experimental method that should be applicable to a wide range 
of initial value problems is described in this paper (Sec. 2). It provided a valuable 
test in a gravitational n-body integration (Sec. 3), where it disclosed a surprisingly 
unstable situation. This example illustrates many of the features of the experimental 
method. Generalizations to other problems are discussed, along with suggestions 
concerning the kinds of problems for which the method might be useful. 

II. PARALLEL CALCULATIONS 

Similar systems are constructed in the computer memory and evolve together, 
while the differences among them are monitored. To the extent that the systems 
are quite similar, subtle differences can be noted. The calculation may be run as 
long as the comparisons are meaningful. The same copy of the program can be 
designed to operate on all sets of data, one after another. If variable time-steps 
are used, some care is required to assure that all systems use the same values of 
the time-variable; this is most easily done by always using the shortest time- 
step. 

“Similar” systems may be obtained by starting from one system, which is copied 
to form the other systems. When the copies are made, small perturbations can be 
introduced. Ideally, these perturbations should be of known character and larger 
than roundoff or integration errors in one time-step, but small enough that the 
systems are recognizable as having come from a common origin. The stage of the 
calculation at which the copies are made can be chosen for convenience; for 
example, if there is some special starting process, to build up a “history” for an 
integration method that makes use of previous states, copies might be made 
after switching over to the usual (running) integration routine. The extent to which 
the present state is not properly attainable from the “history” is then part of the 
perturbation. 

This method is conceptually similar to “interval arithmetic.” It differs by 
extending over the entire calculation and by not requiring well-behaved or 
monotonic input/output relationships. 

Other means for checking initial-value calculations can easily be devised but 
the parallel calculation seems better. Time-reversible systems might be run 
forward for a while, then reversed and run back to the starting point where the 
final state can be compared with the initial state. Time-reversal is not as effective 
as the parallel calculations because of errors in reversing the system. The parallel 
calculation usually requires less modification to a running program for test 
purposes, and may be used with systems that are not time-reversible. 
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III. EXAMPLE 

This method was devised to check an n-body integration in stellar dynamics 
that failed to time-reverse [2]. In this case the state of a system is given by the 
location of its representative point in the 6ndimensional phase space. Two 
systems are described by two points in the same space. If the systems are similar, 
the points are very near each other; a convenient measure of the departure of one 
system from the other is the separation of the phase points: 

42 = i {($’ - xy)” + Tyuy’ - u32}, 
i=l 

(1) 

where T is a dimensional factor introduced to make all coordinates and velocities 
equivalent, the x’s are configuration space coordinates, the u’s are velocities, 
the superscripts refer to corresponding particles in the two systems, and the 
sum extends over all particles. (In gravitational problems with nonvarying masses, 
it is not necessary to distinguish between velocities and momenta.) 

The problem, apart from the parallel calculation feature, was formulated 
according to the recipes of von Hoerner [3]. In this formulation, the integration 
is carried out for y1 particles of equal mass in Cartesian coordinates. Variable time 
steps based on the closest pair of particles are used to retain the accuracy of 
integration for close encounters while permitting coarser steps to be used when 
all the particles are well separated. The same time step is used for all particles. 
A second-order predictor-corrector integration method is used in which an 
attempt is made to retain reasonable accuracy without requiring re-evaluation 
of the forces more than once per integration step. The first ten integrals of the 
motion were used as controls, and were constant to within the same limits as 
von Hoerner reported [3]. A better integration procedure has since been devised [4]; 
the usefulness of the experimental method reported here is independent of the 
methods of handling the main problem. 

The system was started from some set of initial conditions that was externally 
supplied. After enough first-order integration steps to build up the history required 
for the predictor-corrector method, the second copy of the system was made as 
part of the changeover to the normal second-order integration procedure. In 
copying, a perturbation was introduced as a small change in one velocity com- 
ponent of one particle. 

Plots of In d against time are shown in Fig. 1 for two different initial conditions. 
The track shows a steady increase of In d with time, but has a series of spikes 
superposed. The linear trend of the minima between the spikes illustrates an 
exponential increase of the separation of phase points with time. The general 
trend may be followed from In d = -20 to In d M 0; the latter value corresponds 
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FIG. I. Plot of In d vs. time for an S-body system. Two different starting conditions are 
shown. The repeated equidistant spikes on the solid curve are caused by a long-lived binary pair 
that is destroyed by an encounter of one of its members with a third star at the last spike of that 
curve. 

roughly to the mean particle separation or to the r.m.s. particle velocity. Beyond 
this, the system will blow up. This long track illustrates the sensitivity of parallel 
calculations. The spikes are of impressive amplitude-about a factor of 1000 or 
more over the prevailing level. The spikes are associated with close collisions; 
the spike results because the two systems enter the close collision at slightly 
different phases. The recovery afterward is especially dramatic. 

Several experiments were tried with this system. The computation was stopped 
during a close encounter (on top. of a spike) to determine which particles were 
participating. The calculation could then be repeatedly restarted from the same 
initial conditians, but with the perturbation placed on one of t-he participmts 
in the close encounter or on a -particle that did not participate. In this way it was 
found that information propagates through the system very rapidly. 
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Another experiment was to modify the step size in the integration procedure. 
The nature of the tracks was unchanged. 

Parallel calculations with the perturbation set to zero keep d = 0 for all time. 
This is characteristic of computer calculations. The size of the perturbation was 
varied; in general it is desirable to keep the perturbation as small as possible but 
if it is too small, d fluctuates about some small value for a substantial time before 
the reported trends set in. 

This calculation raised many questions concerning the nature of the physical 
system that is supposedly represented. The principal point at issue is the sense in 
which the calculation represents a physical system. The calculation takes on a 
Monte Carlo character with the random element generated by roundoff and 
integration errors. With an exponential growth, the error terms will ultimately 
dominate, and the current state of the system cannot be causally related to the 
initial state in the manner that the physical system would be related to its initial 
state. Subsidiary questions include the rate of information transfer through the 
system, the factors that govern the growth of d, and so on. A result like this 
stimulates further work. In the gravitational case, it was possible to reproduce 
some of these effects analytically [5], although it is unlikely that the effect would 
have been discovered without the computer experiments. Fuller discussions of 
the physical implications of these results appear elsewhere [2], [5]. 

IV. GENERALIZATIONS 

Some guides to the application of the parallel calculation method to other 
problems emerged in the treatment of this example. 

A. MEASURE OF DEPARTURE 

The quantity d that was used in the example is very sensitive to departures of 
one system from another. It may be argued that it is too sensitive and that the 
quantities sought are functionals of the motion which may be much less sensitive 
to calculational errors than d. In the example of Section III, the conventional 
“first integrals of the motion” are well conserved; it is a consequence of the 
equations of motion that errors in these integrals are of higher order than the 
errors in coordinates. Other functionals may have intermediate behavior. 

A safe and convenient procedure appears to be to subject the quantities of 
interest-the “results” of the calculation-to the test afforded by parallel 
calculations. However, the most sensitive indicator is useful to warn of a possibly 
dangerous situation. Other kinds of problems may not admit of as obvious a 
sensitive indicator as d of the example, 
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The inherent stability of the usual first integrals means that a calculation may 
contain unstable features even if it appears safe or plausible when they are used 
as indicators. 

B. MAGNITUDE AND CHARACTER OF INITIAL PERTURBATION 

Ideally the initial perturbation should be large enough that a response will 
develop immediately and it should also be substantially larger than the errors 
of integration in one step or the errors of roundoff, but otherwise it should be as 
small as possible. Several trials may be required to find a good perturbation. 
Various perturbations should be tried stepping in different directions in the function 
space of the problem. Complicated perturbations that might be difficult to interpret 
should be avoided. 

C. INTERPRETATION 

As in the example, it can be difficult to determine whether an unstable result 
indicates a purely numerical effect or a property of the physical system that is being 
represented. Usually, more experimentation is required to distinguish; parallel 
calculations provide additional measures of the behavior of the system under 
these experiments. A very sensitive indicator of departure is helpful. The checks 
with different integration step sizes, mentioned in Section III, are an example of 
this. Different kinds of experiments, which should alter the interplay between 
numerical and physical effects, can be tried. 

Perhaps the most difficult point to answer, in the case of as strong an instability 
as that of Section III, is whether any result can have meaning. The best answer 
to this is to display some quantities, such as the first integrals of the motion, that 
behave as expected. Then it might be safe to infer that some things can be reliably 
calculated, even if some others cannot. 

D. APPLICATION TO OTHER CALCULATIONS 

The method described here should be of some use with almost any calculation 
of evolutionary character. Stellar evolution calculations are an obvious example 
[6]; in effect, parallel calculations have almost been done because, in exploring 
the evolutionary history of stars of nearly the same mass, the initial conditions 
are quite similar. Comparisons using a sensitive measure have not been explicitly 
carried out, however, 
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